

GaAs MMIC Medium Power Broadband Amplifier DC-40GHz

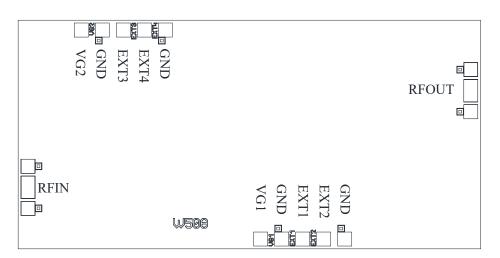
Features

- Frequency: DC 40GHz
- Small Signal Gain: 16dB
- Gain Flatness: ≤±1.0dB
- Noise Figure 2-2.5dB typ. 2GHz 20GHz
- P1dB: > 26dBm, 0.2GHz 18GHz
- Power Supply: +7V/220mA
- Input/Output: 50Ω
- Die Size: 3.3 x 1.63 x 0.07 mm

Functional Block Diagram

Typical Applications

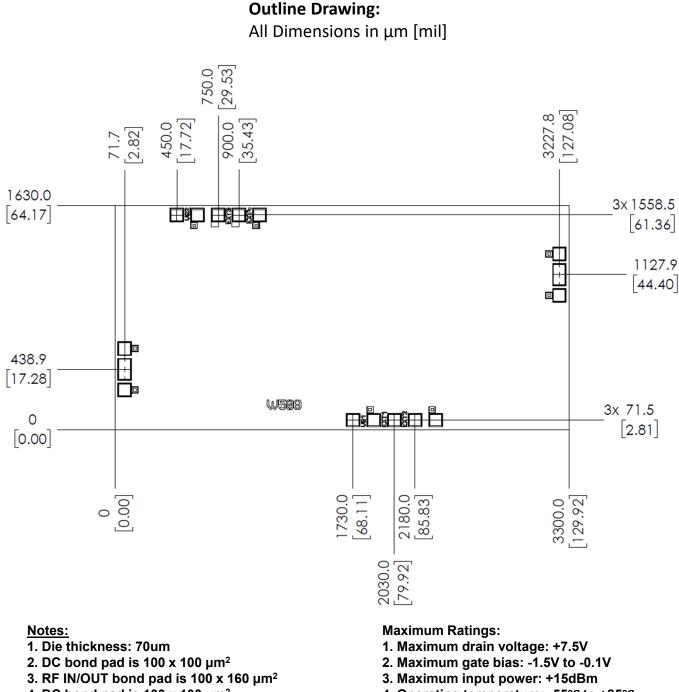
- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics


Electrical Specifications

TA = +25°C, VD = +7V, VG1 = -0.25V, VG2 = 3.0V, ID = 220mA

Parameters	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency	0.2-6		6-18			18-40			GHz	
Small Signal Gain		15			16			17		dB
Gain Flatness		±1			± 1			±1		dB
Noise Figure		2.5		1.5	2.0			4.5		dB
Output 1dB Compression (P1dB)	24	26		22	25		16	21		dBm
Saturated Output Power (Psat)		27.5			26.5			22		dBm
Input Return Loss		> 12			> 13			> 15		dB
Output Return Loss		> 18			> 15			> 10		dB
* Adjust VG1, slightly to obtain device current of 220mA.										

GaAs MMIC Medium Power Broadband Amplifier DC-40GHz

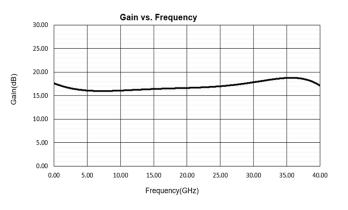


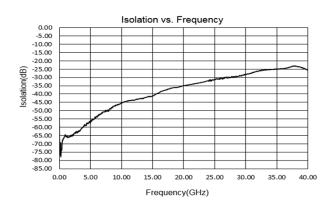
Pad Description

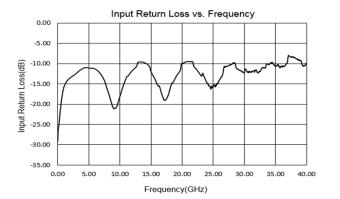
	- <u>p</u>		
No	Function	Description	
1	RF IN	Signal input terminal, connected to 50 Ω circuit, DC Blocking capacitor inside.	
2	RF OUT	Signal output terminal, connected to 50Ω circuit; blocking capacitor required; external DC biasing network required; drain current provided.	
3	VG1	Amplifier 1 st gate bias; connect to external 1000pF and 0.01uF bypass capacitors.	
4	VG2	Amplifier 2 nd gate bias; connect to external 1000pF and 0.01uF bypass capacitors.	
5	EXT1	External bypass pad; connect to external 0.47uF bypass capacitor.	
6	EXT2	External bypass pad; connect to external 1000pF bypass capacitor.	
7	EXT3	External bypass pad; connect to external 1000pF bypass capacitor.	
8	EXT4	External bypass pad; connect to external 0.47uF bypass capacitor.	
9	GND1	Ground pad.	
10	GND2	Ground pad.	

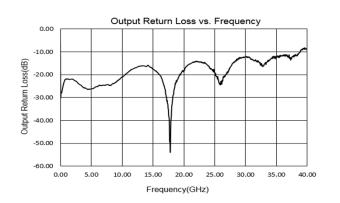
GaAs MMIC Medium Power Broadband Amplifier DC-40GHz

- 4. DC bond pad is 100 x 100 μ m²
- 5. No DC Blocking Capacitor needed for RF input
- 6. External Bias-Tee network needed
- 7. Bond pad metalization: Gold
- 8. Backside metalization: Gold
- 9. Backside of the die (GND)

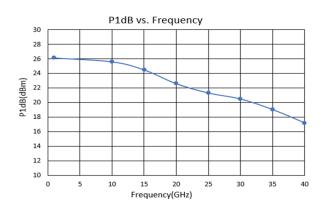

- 4. Operating temperature: -55°C to +85°C
- 5. Storage temperature: -65°C to +150°C

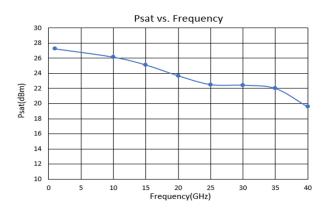

MMW507




GaAs MMIC Medium Power Broadband Amplifier DC-40GHz

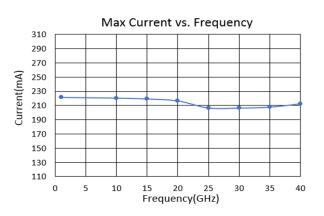
Measurement Plots: S-parameters



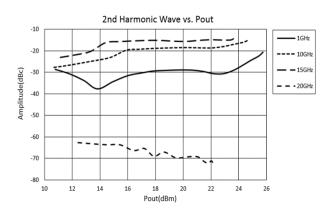


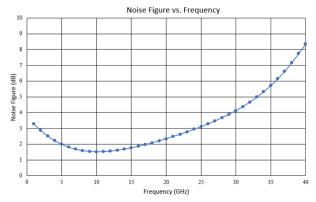
Measurement Plots: P1dB

Measurement Plots: Psat

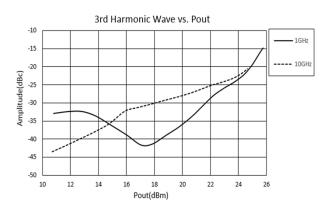


GaAs MMIC Medium Power Broadband Amplifier DC-40GHz


Measurement Plots: Power Added Efficiency

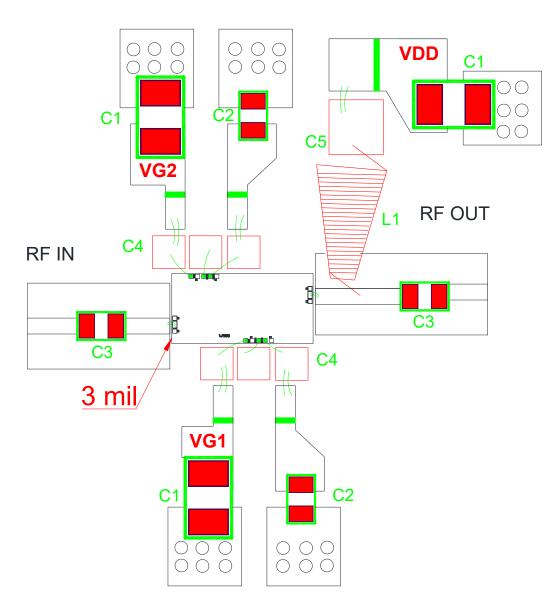

Measurement Plots: Max Current vs. Frequency


Measurement Plots: Harmonic Wave

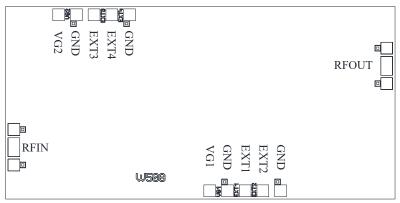


Measurement Plots: Noise Figure

Measurement Plots: Current vs. Pout



GaAs MMIC Medium Power Broadband Amplifier DC-40GHz


Assembly Drawing

Part	Value	Size	Part Number
C1	10uF	0603	C1608X5R1E106M080AC
C2	0.47uF	0402	C1005X5R0J474K050BB
C3	100pF // 0.01uF	30 * 30 mil	MVB3030X103M2H5C1C
C4	0.1uF	0402	0402BB104KW500
L1	0.425uH	135 mil	CC21T36K240G5

GaAs MMIC Medium Power Broadband Amplifier DC-40GHz

Biasing and Operation

Biasing is done with a positive VDD drain supply, a positive VG2 gate supply, and a negative VG1 gate supply. Performance is optimized when the drain voltage VDD is set to +7 V. The nominal gate voltage VG1 is -0.25V.

Turn ON procedure:

1. Connect Input and Output with 50 Ohm source/load.

- 2. Apply negative gate voltage VG1 and set to -0.9 V
- 3. Apply positive voltage VG2 and set to +3.0 V
- 4. Apply positive drain voltage VDD and set to +7.0 V
- 5. Increase VG1 (less negative) to achieve a drain current of 220 mA
- 6. Apply RF signal

Turn OFF procedure:

- 1. Turn off RF signal
- 2. Turn off positive drain voltage VDD
- 3. Turn off positive gate voltage VG2
- 4. Turn off negative gate voltage VG1

Miller MMIC Inc. All rights reserved

Miller MMIC, Inc. holds exclusive rights to the information presented in its Data Sheet and any accompanying materials. As a premier supplier of cutting-edge RF solutions, Miller MMIC has made this information easily accessible to its clients.

Although Miller MMIC believes the information provided in its Data Sheet to be trustworthy, the company does not offer any guarantees as to its accuracy. Therefore, Miller MMIC bears no responsibility for the use of this information. It is worth mentioning that the information within the Data Sheet may be altered without prior notification.

Customers are encouraged to obtain and verify the most recent and pertinent information before placing any orders for Miller MMIC products. The information in the Data Sheet does not confer, either explicitly or implicitly, any rights or licenses with regards to patents or other forms of intellectual property to any third party.

The information provided in the Data Sheet, or its utilization, does not bestow any patent rights, licenses, or other forms of intellectual property rights to any individual or entity, whether in regards to the information itself or anything described by such information. Furthermore, Miller MMIC products are not intended for use as critical components in applications where failure could result in severe injury or death, such as medical or life-saving equipment, or life-sustaining applications, or in any situation where failure could cause serious personal injury or death.