Features
- 1dB Positive Slope
- Noise Figure: 3dB
- Gain: 21dB
- P1dB: +14dBm
- Biasing +5V @ 42 mA
- Impedance: 50Ω
- Die Size: 2.7 x 1.3 x 0.1 mm

Typical Applications
- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

Electrical Specifications
TA = +25°C, Vdd = +5V, Idd = 42mA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2-6</td>
<td></td>
<td>6-12</td>
<td></td>
<td>12-20</td>
<td>GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>20.8</td>
<td>21.3</td>
<td>21.7</td>
<td>±0.2</td>
<td>±0.3</td>
<td>±0.1</td>
<td>dB</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±0.2</td>
<td>±0.3</td>
<td>±0.1</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1dB Compression</td>
<td>15</td>
<td>14.5</td>
<td>14</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P1dB)</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>17.5</td>
<td>17</td>
<td>16</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Psat)</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Third Order Intercept</td>
<td>24</td>
<td>23.5</td>
<td>23</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IP3)</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Figure</td>
<td>3.2</td>
<td>3</td>
<td>2.5</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>30</td>
<td>42</td>
<td>70</td>
<td>mA</td>
<td>30</td>
<td>42</td>
<td>70</td>
<td>30</td>
<td>42</td>
<td>70</td>
</tr>
</tbody>
</table>

MM363
GaAs pHEMT MMIC
2-20 GHz

MML054
GaAs pHEMT MMIC
Low Noise Amplifier
2-20 GHz

Functional Block Diagram
Gain

Gain versus Frequency (GHz)

Return Loss

Return Loss versus Frequency (GHz)

Noise Figure

Noise Figure versus Frequency (GHz)

Output Power

Output Power versus Frequency (GHz)
Outline Drawing:
All Dimensions in mm

Pad Description

<table>
<thead>
<tr>
<th>PAD</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input AC coupling 50Ω Impedance</td>
</tr>
<tr>
<td>2</td>
<td>VD</td>
<td>This pad provides power supply voltage for the amplifier and external 100pF bypass capacitor is required.</td>
</tr>
<tr>
<td>3</td>
<td>OUT</td>
<td>Output AC coupling 50Ω Impedance</td>
</tr>
<tr>
<td>Die Bottom</td>
<td>GND</td>
<td>Die bottom must be connected to RF/DC ground</td>
</tr>
</tbody>
</table>
MM363
GaAs pHEMT MMIC
2 - 20 GHz

Notes:
1. Die thickness: 100um
2. Typical bond pad is 100*100 μm²
3. Bond pad metalization: Gold
4. Backside metalization: Gold
5. Backside of the die (GND)
6. No connection required for unlabeled bond pads

Maximum Ratings:
1. Power supply voltage: +6V
2. RF input power: +17dBm
3. Storage temperature: -65°C to +175°C
4. Operating temperature: -55°C to +85°C