**MML060**

**GaAs MMIC**

**Low Noise Amplifier**

**17-23GHz**

---

**Features**

- Single Biasing Voltage (Self Biased)
- Frequency: 17-23GHz
- Small Signal Gain: 26.5dB
- Noise Figure: 1.3dB typ./1.5dB max.
- P1dB: 4dBm
- Power Supply: +5V/12mA
- Input/Output: 50Ω
- Die Size: 1.85 x 1.25 x 0.09 mm

**Typical Applications**

- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

---

**Functional Block Diagram**

---

---

**Electrical Specifications**

TA = +25°C, Vd = +5V

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>17-23</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>25.5</td>
<td>26.5</td>
<td>27.5</td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±1.0</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>-</td>
<td>1.3</td>
<td>1.5</td>
<td>dB</td>
</tr>
<tr>
<td>Output 1dB Compression (P1dB)</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>4.5</td>
<td>5</td>
<td>6</td>
<td>dBm</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>14</td>
<td>20</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>11</td>
<td>16</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Static current</td>
<td>12</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
MM241PD
GaAs MMIC
0.5 - 18 GHz

1.0.0
BIT DIGITAL CONTROL ATTENUATOR
– MMIC 0.5 - 18GHz

Gain vs. Frequency

Noise Figure vs. Frequency

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

Reverse Isolation vs. Frequency

P1dB vs. Frequency

Low Noise Amplifier

MML060
GaAs MMIC
Low Noise Amplifier
17-23GHz

MML060
MML060
MML060
MML060
# Pad Description

<table>
<thead>
<tr>
<th>Pad</th>
<th>Function</th>
<th>Description</th>
<th>Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF IN</td>
<td>RF signal input terminal, no blocking capacitor required.</td>
<td><img src="image" alt="RF IN" /></td>
</tr>
<tr>
<td>2</td>
<td>RF OUT</td>
<td>RF signal output terminal, no blocking capacitor required.</td>
<td><img src="image" alt="RF OUT" /></td>
</tr>
<tr>
<td>3</td>
<td>Vd</td>
<td>Amplifier drain bias; external 100pF bypass capacitor required.</td>
<td><img src="image" alt="Vdd" /></td>
</tr>
<tr>
<td>Die bottom</td>
<td>GND</td>
<td>Die bottom must be connected to RF/DC ground.</td>
<td><img src="image" alt="GND" /></td>
</tr>
</tbody>
</table>
Notes:
1. Die thickness: 100um
2. Typical bond pad is 100*100 μm²
3. Bond pad metalization: Gold
4. Backside metalization: Gold
5. Backside of the die (GND)
6. No connection required for unlabeled bond pads

Maximum Ratings:
1. Maximum drain voltage: +7V
2. Maximum input power: +20dBm
3. Operating temperature: -55°C to +85°C
4. Storage temperature: -65°C to +150°C