Features
- Singles Basing Voltage (Self Biased)
- Operating Frequency: 2-20GHz
- Noise Figure: 1.5dB
- Gain: 23dB
- P1dB: +16.5dBm
- Self Biasing +5V @ 65 mA
- Input/Output: 50Ω matched
- Die Size: 1.5 x 0.8 x 0.1 mm

Typical Applications
- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

Electrical Specifications
TA = +25°C, Vdd = +5V, Idd = 65mA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2-6</td>
<td></td>
<td>6-12</td>
<td>12-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>23</td>
<td>23.5</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>13</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output 1dB Compression (P1dB)</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>17</td>
<td>17.5</td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3)</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>1.2</td>
<td>1.5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Operating Current</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>mA</td>
</tr>
</tbody>
</table>
MM323H GaAs pHEMT MMIC
2.7 – 3.5 GHz

MML097 GaAs pHEMT MMIC
Low Noise Amplifier
2-20GHz

Gain

Return Loss & Reverse Isolation

Noise Figure

Output Power P_{1}

Psat

OIP3

Psat

OIP3
Pad Description

<table>
<thead>
<tr>
<th>PAD</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>This pad is AC coupling, 50 ohm matched</td>
</tr>
<tr>
<td>2</td>
<td>VD</td>
<td>This pad provides the power supply voltage of the amplifier and needs to be externally connected with the 100pF bypass capacitor.</td>
</tr>
<tr>
<td>3</td>
<td>OUT</td>
<td>This pad is AC coupling, 50 ohm matched</td>
</tr>
<tr>
<td>Die Bottom</td>
<td>GND</td>
<td>Die bottom must be connected to RF/DC ground.</td>
</tr>
</tbody>
</table>
Notes:
1. Die thickness: 100um
2. Typical bond pad is 100*100 μm²
3. Bond pad metalization: Gold
4. Backside metalization: Gold
5. Backside of the die (GND)
6. No connection required for unlabeled bond pads

Maximum Ratings:
1. Power supply voltage: +6V
2. RF input power: +18dBm
3. Storage temperature: -65°C to +150°C
4. Operating temperature: -55°C to +85°C